加拿大28

【和山数学论坛第496期】河南理工大学李自来副教授学术报告

信息来源:   点击次数:  发布时间:2025-10-14

一、报告题目:Zero mach number limit for global smooth solutions to the non-isentropic slightly compressible Navier-Stokes system with Dirichlet boundary conditions  

二、报告人:李自来 副教授

三、时 间:20251018(  15:0016:00

四、地 点:A4-305


报告摘要We investigate all-time existence of smooth solutions for the non-isentropic slightly compressible Navier-Stokes equations with Dirichlet boundary conditions in 2D exterior domains. By virtue of the decay property of smooth solutions to the limiting system, we establish all time existence of strong solutions for the corresponding compressible system, provided that the Mach number is sufficiently small. Additionally, as the Mach number approaches zero, solutions of the compressible system uniformly converge to that of the incompressible system for all time. In particular, to derive higher-order estimates of density function near the boundary, we utilize the  global geometric tools developed by Christodoulou and Lindblad [Commun. Pure Appl. Math. 53 (2000) 1536-1602].


报告人简介:李自来,河南理工大学副教授,硕士生导师。主要研究偏微分方程中的流体力学方程,目前已在国内外著名学术刊物上发表SCI论文20余篇,其中包括《Pacific J. Math.》《J. Differential Equations》《J. Math. Fluid Mech.》《Stud. Appl. Math.》《Science China-Mthematics》等SCI数学期刊上。曾主持国家自然科学基金青年基金1项,国家自然科学基金天元项目1项,中国博士后面上项目1项等。


欢迎广大师生参加! 联系人:陈辉,李爱军